こんにちは!
データサイエンティストのウマたん(@statistics1012)です!
今回はコールドスタート問題について解説していきます!
コールドスタート問題とは「システムが使用履歴などのデータを持っていないため、効果的な動作と提供が難しい状況」と定義されています。
マーケティング・レコメンドにおいて、購入履歴がない場合だとおすすめ商品が推薦できない問題が挙げられます。機械学習においても、
新たなデータに対して適切なモデルが見つからないといった問題もコールドスタート問題に含まれます。
この記事では、コールドスタート問題の定義と背景、解決策について解説します!
・コールドスタート問題の定義・背景について解説!
・コールドスタート問題の解決策について解説!
目次
コールドスタート問題について解説!
コールドスタート問題とは「システムが使用履歴などのデータを持っていないため、効果的な動作と提供が難しい状況」と定義されています。
例として画像判別を挙げてみましょう。
犬と猫の画像を学習して未知のデータに対して判定を行いますが、与えられたデータを学習する必要があるため、事前にデータがなければ結果をうまく出力することができません。
また自社開発のレコメンドシステムなどは、自社内にデータが蓄積されておらず十分な学習がされていないままリリースすることが多々ありますね!
それ以外にも色々な背景(問題)があるので、こちらの図を見てみると良いでしょう!
コールドスタート問題の解決策について解説!
では、コールドスタート問題を解決するにはどうすればよいでしょうか?ここでは4つ紹介していきますので順に見ていきましょう!
1. カテゴリー情報などの活用
顧客情報などが蓄積されていない場合、より幅広い情報を持つカテゴリーといった情報で補うことが挙げられます。
また階層モデルによる推論もコールドスタート問題の改善につながります。
階層モデルとは「階層構造をもつデータから、階層ごとの個体差を表現するモデル」を意味します。
こちらも顧客情報がなくとも、既存顧客のカテゴリーのデータがあるため、属しているカテゴリーからある程度予測が可能になります。
2. プロモーションの最適化
新しい顧客に対して、魅力的なプロモーションやチュートリアルを提供することでレコメンドでは補えなかった新商品・サービスに関心を向ける方法が挙げられます。
3. 転移学習・半教師学習の活用
機械学習において、過去のタスクで学習した知識を新しいタスクに転用できる転移学習や、観測されたデータと観測されていないデータ両方を使用し、少しの観測されたデータを用いることで、観測されていないデータを学習できる半教師学習が挙げられます。
4. トレンド・パターンの利用
新しいコンテンツや顧客がどのようなトレンド・パターンにマッチするか分析して、その結果に基づいて予測する方法が挙げられます。これにより一般的な関心が一致する商品などを表示することができます。
コールドスタート問題 まとめ
本記事ではコールドスタート問題についてまとめました!
コールドスタート問題では主にレコメンドに関わる話が多いので、こちらの協調フィルタリングの記事やレコメンドのアルゴリズムも見てみると良いでしょう!
このようなデータサイエンスの力を身に付けるためにはスタビジの記事やスクールを活用すると良いでしょう。
そして僕の経験を詰め込んだデータサイエンス特化のスクール「スタアカ(スタビジアカデミー)」を運営していますので,興味のある方はぜひチェックしてみてください!
AIデータサイエンス特化スクール「スタアカ」
【価格】 | ライトプラン:1280円/月 プレミアムプラン:149,800円 |
---|---|
【オススメ度】 | |
【サポート体制】 | |
【受講形式】 | オンライン形式 |
【学習範囲】 | データサイエンスを網羅的に学ぶ 実践的なビジネスフレームワークを学ぶ SQLとPythonを組み合わせて実データを使った様々なワークを行う マーケティングの実行プラン策定 マーケティングとデータ分析の掛け合わせで集客マネタイズ |
データサイエンティストとしての自分の経験をふまえてエッセンスを詰め込んだのがこちらのスタビジアカデミー、略して「スタアカ」!!
当メディアが運営するスクールです。
24時間以内の質問対応と現役データサイエンティストによる複数回のメンタリングを実施します!
カリキュラム自体は、他のスクールと比較して圧倒的に良い自信があるのでぜひ受講してみてください!
他のスクールのカリキュラムはPythonでの機械学習実装だけに焦点が当たっているものが多く、実務に即した内容になっていないものが多いです。
そんな課題感に対して、実務で使うことの多いSQLや機械学習のビジネス導入プロセスの理解なども合わせて学べるボリューム満点のコースになっています!
Pythonが初めての人でも学べるようなカリキュラムしておりますので是非チェックしてみてください!
ウォルマートのデータを使って商品の予測分析をしたり、実務で使うことの多いGoogleプロダクトのBigQueryを使って投球分析をしたり、データサイエンティストに必要なビジネス・マーケティングの基礎を学んでマーケティングプランを作ってもらったり・Webサイト構築してデータ基盤構築してWebマーケ×データ分析実践してもらったりする盛りだくさんの内容になってます!
・BigQuery上でSQL、Google Colab上でPythonを使い野球の投球分析
・世界最大手小売企業のウォルマートの実データを用いた需要予測
・ビジネス・マーケティングの基礎を学んで実際の企業を題材にしたマーケティングプランの策定
・Webサイト構築してデータ基盤構築してWebマーケ×データ分析実践して稼ぐ
データサイエンスに関する記事はこちら!
データサイエンスを勉強できるスクールやサイトは、ぜひこちらを参考にしてみてください!