おすすめ勉強法

【これだけ!】AI(人工知能)の勉強ロードマップを徹底的に解説!

AIのロードマップ
記事内に商品プロモーションを含む場合があります
ウマたん
ウマたん
本記事では、AIを勉強するロードマップについて徹底的に解説していきます。まずは、AIの概要について理解して統計学の基本知識・機械学習の基本知識・Pythonでの実装・インフラ周りの知識などを包括的に理解していきましょう!

こんにちは!

消費財メーカーでデジタルマーケター・データサイエンティストを経験後、現在は独立して働いているウマたん(@statistics1012)です!

統計学の修士号を持っており、大学時代は統計学を主に専攻していました。

AIという言葉がいたるところで叫ばれるようになり久しいですが、

・結局AIとは何なのか?
・AIをどのようにビジネスに活用していけばよいのか?

理解していますでしょうか?

正直、AIという言葉を明確に理解せず使っているビジネスパーソンが多い気がしています。

会社でAIという言葉が登場した時は、かなり注意して本来の目的を確認するようにしています笑

ロボたん
ロボたん
うーん、確かにそう言われるとAIについて明確に理解できていない気がするなー・・
ウマたん
ウマたん
AIを上手く使いこなせるようにしっかり理解していこう!

そのようにAIとは素晴らしい未来を切り開いていく画期的なものでありながら、使い方によってはゴミにすらなるものなのです。

魔法のような何でもできるものと思ったら大間違い。

ここで、まずはAIとはどのようなものなのか、AIをどのようにビジネスに活用していけばよいのか理解しておきましょう!

堅苦しい説明は嫌だ!動画で簡単に理解したい!という方は以下のYoutube動画をご覧ください!

AIとは

stories Memory storage

そもそも人工知能(AI)とは何でしょうか?

少し前からAIという言葉が色んなところで聞かれるようになり、今では聞かない日はないまでになりました。実際にGoogleトレンドを見てみてもAIの流行が見て取れます。

人工知能(AI)と聞くとディープラーニングを思い浮かべる人も多いのではないでしょうか?

しかしディープラーニングが登場したのは2006年であり、人工知能という言葉はそれよりもずっと前からある言葉。

必ずしも人工知能(AI)=ディープラーニングとは言えないのです。

よく言われるのが、人工知能(AI)の中に機械学習がありその中にディープラーニングがあるという構造。

だからこそ人工知能(AI)という言葉は軽々しく使ってはいけないのです。

人工知能(AI)は定義の範囲が広く、簡単なルールベースのアルゴリズムでもAIだし機械学習もAIだしもちろんディープラーニングもAIだし。

どの文脈で人工知能(AI)という言葉が使われているかは注意しなくてはいけません。

AIの勉強法

AIについて理解するには AIの基礎を学んだら

さて、そんなAIですがどのように勉強していけばよいのでしょうか?

僕自身いままでAIまわりの勉強をしてきた経験から、なるべくここら辺をこんな手順で学んだらよいよ!というロードマップをお伝えします。

やるべきAIの勉強範囲はザックリ以下の通り。

・統計の基本を勉強
・機械学習手法の基本を勉強
・ディープラーニング(深層学習)を勉強
・Python実装(並行して行いたい)
・インフラ/データベースまわりの知識

—-ここから先はAI開発がしたいのか・AI分析がしたいのか—-
【AI開発の場合】
・Flask/Django
・HTML/CSS/Javascript
【AI分析】
・より複雑な特徴量エンジニアリング
・統計的因果推論などの深い統計学理解

これは要らない!これは要る!みたいな議論はあるかもしれませんが、あくまで一意見として受け取ってもらえれば嬉しいです。

AI開発サイドとAI分析サイドでは必要要件が変わってくるので、ある程度自分はどちら側にいきたいのか明確にしておいた方がよいでしょう!

もちろんどちらもできる神人材もいますが、これからの世の中自分の軸足をぶらさずどちらかに置いておくことが大事です。

ウマたん
ウマたん
作れる人と使える人、どちらも貴重な人材だ!

統計学の基本を勉強

Stories 動画

まずは、統計学の基本を勉強しておくことをオススメします。

統計学の基本は、動画で簡単に解説しています。

統計的検定相関関係の理解など、データサイエンスの基本的な部分をまずは学んでもらいます。

統計学の基本には以下の書籍あたりがオススメです。

created by Rinker
¥3,190
(2024/09/13 15:31:53時点 Amazon調べ-詳細)

少し分かりにくいなーという方は統計学の基礎を学ぶ講座を僕自身がUdemyで公開していますので、是非チェックしてみてください!

【初学者向け】統計学の基礎をアニメーションを通じてビジネス観点で理解していこう!

Udemy 統計
【オススメ度】
【講師】僕!
【時間】3時間
【レベル】初級

アニメーションで学ぶ概要編とPythonで実際に手を動かしながら学んでいく実践編に分かれています。

まず、統計学の全体像とビジネスに必要な知識を学んでいきます。

そして多変量解析の領域に入りよく使われる手法を中心に学んでいきます。

ビジネスに活かせる統計学について網羅的にしっかり学ぶことが可能ですので是非受講してみてください!

\30日以内なら返金無料/このコースを見てみる

また、統計学の勉強法については以下の記事でまとめていますので詳しく知りたい方はぜひチェックしてみてください!

統計学入門に必要な知識と独学勉強方法を簡単に学ぼう!当ブログ【スタビジ】の本記事では、統計学入門に必要な知識をカンタンにまとめ、それらをどのように効率的に独学で勉強していけばよいかをお話ししていきます。統計学は難しいイメージが少しありますが、学び方をしっかり考えれば大丈夫!...

機械学習手法の基本を学ぶ

Stories

続いて機械学習手法の基本を学びます。

機械学習については動画で簡単に解説していますのでぜひチェックしてみてくださいね!

機械学習に分類される手法は非常に多くあります。

ここではディープラーニングにつながる基本的な機械学習手法の理解をしておきましょう!

機械学習手法を理解する上では、数学(微分・線形代数)の理解が欲しいところ。

数学の理解と一緒にPythonでの実装も学んでいくと理論と実務の両輪が上手くかみあってよいでしょう。

AIに必要な数学スキルについては以下の記事でまとめていますのでチェックしてみてください!

AI 数学
AI(人工知能)や機械学習でどこまでの数学レベルが必要なのか5分で解説!当サイト【スタビジ】本記事では、AIを理解する上で必要な数学の知識についてまとめていきます。AI理解に必要な数学は難しくありません。高校数学レベルの微積・線形代数・確率統計が分かっていれば問題なし。それらの数学をどのように勉強していけばよいのかについてもまとめていきますよー!...

数学の基本をある程度固めた後は機械学習のアルゴリズムもだいぶ理解がしやすくなっています。

機械学習の手法はたくさんあるのであせらず順々に理解していきましょう!

これらの機械学習手法を網羅的に学べるUdemy講座を僕が公開しているので是非チェックしてみてください!

【初学者向け】データ分析コンペで楽しみながら学べるPython×データ分析講座

Udemy-course
【オススメ度】
【講師】僕!
【時間】4時間
【レベル】初級~中級

このコースは、なかなか勉強する時間がないという方に向けてコンパクトに分かりやすく必要最低限の時間で重要なエッセンスを学び取れるように作成しています。

アニメーションを使った概要編ハンズオン形式で進む実践編に分かれており、概要編では体系的にデータ分析・機械学習導入をまとめています。

データサイエンスの基礎について基本のキから学びつつ、なるべく堅苦しい説明は抜きにしてイメージを掴んでいきます。

統計学・機械学習の基本的な内容を学び各手法の詳細についてもなるべく概念的に分かりやすく理解できるように学んでいきます。

そしてデータ分析の流れについては実務に即したCRISP-DMというフレームワークに沿って体系的に学んでいきます!

データ分析というと機械学習でモデル構築する部分にスポットがあたりがちですが、それ以外の工程についてもしっかりおさえておきましょう!

続いて実践編ではデータコンペの中古マンションのデータを題材にして、実際に手を動かしながら機械学習手法を実装していきます。

ここでは、探索的にデータを見ていきながらデータを加工し、その上でLight gbm という機械学習手法を使ってモデル構築までおこなっていきます。

是非興味のある方は受講してみてください!

\30日以内なら返金無料/このコースを見てみる

また、機械学習の勉強には書籍もオススメです!

手前味噌ですが、機械学習手法の中で非常にパフォーマンスの高いXGBoostを用いて企業課題を解決する物語「俺たちひよっこデータサイエンティストが世界を変える」を書いていますのでぜひ読んでみてください!

created by Rinker
¥361
(2024/09/13 17:16:30時点 Amazon調べ-詳細)

価格は300円ちょっとですし、Kindle unlimitedであれば無料で読めるのでぜひ読んでみてくださいね!

また、機械学習手法のアルゴリズム理解には以下の書籍がおすすめ。

created by Rinker
¥3,300
(2024/09/13 13:29:50時点 Amazon調べ-詳細)

少し難しく感じられるところもあると思いますが粘り強く勉強していきましょう!

正直「はじめての」レベルではないなーとは思ってます笑

機械学習の勉強法については以下の記事でまとめています!

機械学習
【入門】機械学習のアルゴリズム・手法をPythonとRの実装と一緒に5分で解説!当サイト【スタビジ】の本記事では、入門者向けに機械学習についてカンタンにまとめていきます。最終的にはどのように機械学習を学んでいけばよいかも見ていきます。細かい手法の実装もPython/Rを用いておこなっていくので適宜参考にしてみてください。...

ディープラーニングについて学ぶ

stories Memory storage

続いて、ディープラーニングについて学んでいきます。

動画でディープラーニングについて簡単に解説していますよー!

ディープラーニングを学ぶ上では以下の書籍は圧倒的にオススメ!!

画像認識に強いCNN(畳み込みニューラルネットワーク)までを網羅しています。

時系列分析・自然言語処理に使われるRNN(再帰的ニューラルネットワーク)まで理解したいのであれば以下の書籍がおすすめ!

created by Rinker
オライリー・ジャパン
¥3,960
(2024/09/13 05:30:52時点 Amazon調べ-詳細)

個人的にはCNNまで理解しておくだけでも十分だと思っています。

RNNは必要に応じて勉強してください。

ディープラーニングに関しては「スタアカ(スタビジアカデミー)」という当メディアが展開するスクール内にコンテンツがあります。

業界最安値のデータサイエンス専門スクール「スタアカ」

スタアカトップ

業界最安値で展開しており、統計学と機械学習の基本からディープラーニングまで学べます。

プレミアムプランに登録いただくと、Udemyの講座を全て無料贈呈しているのでも網羅的に学びたいのであればUdemyを個別に購入するよりもこちらの方がお得です!

是非チェックしてみてください!

ディープラーニングの勉強法については以下の記事で詳しくまとめています!

【初心者向け】ディープラーニングの勉強ロードマップまとめ!当サイト【スタビジ】本記事では、ディープラーニングの学習方法について詳しくまとめていきます!ディープラーニングは難しいと思われがちですが、アルゴリズムは意外とシンプルで実装自体も非常に簡単なんです!Pythonでの実装もおこなっていきますよー!...

並行してPythonで実装もしっかり行うように

stories pc

統計学・機械学習・ディープラーニングを勉強しつつ、それとは並行してPythonでの実装もできるようにしたいところ。

というかPythonでの実装をやらないとイメージもわかないですし飽きちゃいますよね。

Python実装に関しては以下のコースをオススメします!

【初学者向け】データ分析コンペで楽しみながら学べるPython×データ分析講座

Udemy-course
【オススメ度】
【講師】僕!
【時間】4時間
【レベル】初級~中級

またPythonで出来ることをギュッと詰め込んだ以下のPythonコースもあるので、機械学習に限らずPythonを全体的に学びたいという方はこちらもチェックしてみてください!

【実践】ビジネスケースとつなげてPythonで出来ること5つを学べる3日間集中コース

Udemy python
【オススメ度】
【講師】僕!
【時間】3.5時間
【レベル】初級~中級

Pythonで出来ることのうち以下の5つを網羅して学んでいきます。

・データ集計・加工・描画
・機械学習を使ったモデル構築
・Webスクレイピング
・APIの利用
・Webアプリケーション開発

データ集計・加工・描画と機械学習モデル構築に関してはKaggleというデータ分析コンペティションのWalmartの小売データを扱いながら学んでいきます。

WebスクレイピングとAPI利用とWebアプリケーション開発に関しては、楽天の在庫情報を取得してSlackに自動で通知するWebアプリケーションを作成して学んでいきます。

Pythonで何ができるのか知りたい!という方には一番はじめにまず受けていただきたいコースです!

\30日以内なら返金無料/このコースを見てみる

また、自分でやり切る自信があるならPyQというサービスでコーディングしていくことがオススメです。

【体験談】PyQの評判は?3か月本気でPythonを勉強してみたので徹底レビュー!PyQはPythonを学ぶ上で非常にオススメで評判の高いサービスです。ただ、他のサービスとの違いが分かりにくいのも事実。そこで当サイト【スタビジ】では、実際にPyQを3か月体験した僕がPyQのメリット・デメリット・評判について徹底的にレビューしていきます!...

Python特化のサービスなだけあって、非常に広範な教材になっています。

環境構築をする必要がないので、すぐコーディングしていくことが可能。

もし、なかなかモチベーションが湧かないよという方はプログラミングスクールをオススメします。

どちらも僕自身が受講してみてオススメできるスクールになっています。

【体験談】テックアカデミー評判は?3か月本気受講してみたので徹底レビュー!当ブログ【スタビジ】では、様々なプログラミングスクールの中からテックアカデミーのメリット・デメリット・評判について3か月の体験談をもとに赤裸々にレビューしていきます。...
Aidemy
【体験談】評判の良い「Aidemy」を受講して分かったメリット・デメリット当サイト【スタビジ】の本記事では、AidemyのPremium planについて実際に自分で受講してみた体験談をもとに分かったこと・メリット・デメリットについてまとめていきます。僕の主観だけでなく口コミや評判に関してもまとめていくのでAidemyを検討している人はぜひ参考にしてみてくださいね!...

ただコストは高くつくのでまずは無料相談や無料体験をしてみて合いそうだなと思ったら受講してみると良いでしょう!

コストが高すぎる!という方は業界最安値のデータサイエンススクール「スタアカ」のご受講お待ちしております!

業界最安値のデータサイエンス専門スクール「スタアカ」

スタアカトップ

Pythonでの勉強法は以下の記事で詳しくまとめています!

Python独学勉強法
【Python独学勉強法】Python入門を3ヶ月で習得できる学習ロードマップ当サイト【スタビジ】の本記事では、過去僕自身がPythonを独学を駆使しながら習得した経験をもとにPythonを効率よく勉強する方法を具体的なコード付き実装例と合わせてまとめていきます。Pythonはできることが幅広いので自分のやりたいことを明確にして勉強法を選ぶことが大事です。...

必要に応じてインフラ・データベース周りの知識も付けたい

クラウド

正直、AIを使いこなす上では理論が分かってPythonが分かってもまだ不十分です。

・データが貯まっているのはデータベースでありそこにアクセスしてデータを抽出してくること
・そのデータを流し込んでPythonで分析をする分析環境の構築や操作など

インフラ・データベース周りの知識も必要になってきます。

データベースでのデータ抽出においてはSQL言語の知識は必須。

SQL
SQLを最速でマスターできる勉強方法とオススメ本・サイト当サイト【スタビジ】の本記事では、SQLを勉強するのにオススメな本と勉強法についてまとめていきます!SQLはデータサイエンスの基本であり必ずマスターしておかなくてはいけない言語です。早い段階から手を動かすことで理解が深まりますよー!...

DMBOKというデータマネジメントのフレームワークに基づいた講座をUdemyで公開しているので是非見てみてください!

【初学者向け】データマネジメント入門!DX推進やAI 導入を支える重要な要素をDMBOKに沿ってみていこう!

Udemy データマネジメント講座
【オススメ度】
【講師】私自身
【時間】1.5時間
【レベル】初級

データ活用を推進するためには、データマネジメントが非常に重要になってきます。

データマネジメントはないがしろにされがちなのですが、めちゃくちゃ大事なんです!

全くの初心者でも理解できるように説明しているのでよければ是非目を通してみください!

\30日以内なら返金無料/このコースを見てみる

ちなみにGoogleのプロダクトであるBigQueryを使ってSQLでデータ加工集計などをする実践的なコースを先ほども紹介した「スタアカ(スタビジアカデミー)」で取り上げているので是非チェックしてみてください!

AI開発側に進む場合

AI

AI開発をやりたいのであれば必要最低限Pythonで実装できるWebアプリケーションフレームワークFlask/Djangoの実装とWebサービス構築において必要であるHTML/CSS/Javascriptの習得は必須ですね。

FlaskとDjangoの違いについては以下の記事でまとめています!

Flask Django
Flask vs Django!PythonのWebアプリケーションフレームワークを徹底比較!当サイト【スタビジ】の本記事では、PythonのWebアプリケーションフレームワークである「Flask」と「Django」の違いを徹底的に比較していきます!なんとなーく分かっているようで分からない2つのフレームワークの違いをこの機会にしっかりおさえておきましょう!...

FlaskやDjangoでの簡単なWebアプリケーションを実装している記事を以下に挙げています。

macとsurface
Flaskでできることを確認しながら簡単なWebアプリの実例を作ってみよう!当サイト【スタビジ】の本記事では、Pythonの軽量WebアプリケーションフレームワークであるFlaskを使って簡単なWebアプリケーションを作成していきたいと思います。Pythonを開発言語としても使えるようになると、幅が広がりますよー!...
Django 学習
Djangoの学習におすすめのサイトと勉強を進める注意点 こんにちは! データサイエンティストのウマたん(@statistics1012)です! Pythonを使ってWebア...

参考にしてみてください!

先ほど紹介した以下のUdemy講座ではWebアプリケーション作成も取り上げています。

【実践】ビジネスケースとつなげてPythonで出来ること5つを学べる3日間集中コース

Udemy python
【オススメ度】
【講師】僕!
【時間】3.5時間
【レベル】初級~中級

Webアプリケーションの作成方法は以下の記事も参考にしてみてください!

Webアプリ開発
【入門初心者向け】PythonでWebアプリを作ってみた!開発方法徹底解説!当サイト【スタビジ】の本記事では、PythonのWebアプリケーションフレームワークを用いてWebアプリを開発していく方法を徹底解説していきます。実際にDjangoでの実装とFlaskでの実装をおこなっていったあと、勉強法についても見ていきましょう!...

AI分析側に進む場合

Stories office

AI分析側に進む場合は、より深い統計的観点の理解や複雑な特徴量エンジニアリングの理解などが必要であると考えます。

統計の世界で非常に重要かつ深い分野である統計的因果推論については以下の記事でまとめています!

統計的因果推論_アイキャッチ
【5分で分かりやすく解説】統計的因果推論!当サイト【スタビジ】の本記事では、非常に奥が深い分野である統計的因果推論について見ていきたいと思います。相関関係と因果関係は違うということをしっかり理解し、どのように因果を見つけていけばよいか様々な方法を見ていきましょう!...

また特徴量エンジニアリングについては簡単に以下の記事でまとめています。

特徴量エンジニアリング
機械学習で重要な特徴量エンジニアリングとは?当サイト【スタビジ】の本記事では、精度の高いモデルを構築する上で非常に重要な特徴量エンジニアリングについて簡単に解説していきます。特徴量エンジニアリングの流れやテクニックを知っているのと知っていないのとではたたき出すアウトプットの質が全く違うので必ず理解しておきましょう!...

特徴量エンジニアリングに関しては以下の本がオススメです。

created by Rinker
¥3,536
(2024/09/12 22:44:11時点 Amazon調べ-詳細)

KaggleNishikaなどのデータ分析コンペに挑戦してみたり、実際に実務を通してレベルアップしていきたいところです。

【初心者向けKaggle入門】Kaggleサブミットの前準備と勉強法!当サイト【スタビジ】の本記事では、Kaggleについて解説していきKaggleに挑戦するまでにどのようなことを勉強しておいたらよいのか丁寧に解説していきます。ある程度データサイエンスの土台が出来た後はKaggleに挑戦し、世界各国の猛者と凌ぎを削りましょう!...

自力でコンペに参加するのは難しそう・・・という方は以下の講座やスクールを受講してください!

データ分析コンペに取り組んでいくUdemy講座:【初学者向け】データ分析コンペで楽しみながら学べるPython×データ分析講座
データ分析コンペに取り組んでいくスクール:業界最安値のデータサイエンス専門スクール「スタアカ」

AIの勉強方法 まとめ

だいぶがっつりAIの勉強方法についてまとめてきました。

これが必ずしも正解であるとは限りませんが、少なくともここで取り上げた教材やサービスは自分が実際に読んだり体験したりしていいなーと思ったもの or 自分が経験に基づいて作成したものなので是非チェックしてみてください!

理論を深める場合は書籍を使って、Pythonでの実装を進めていくのはPyQテックアカデミーAidemyスタアカなどのWebサービスを使用することをオススメします。

プログラミングスクールは少々お金はかかりますが、強制力をつけるためにもオススメですよー!

以下の記事で詳しく比較していますのでチェックしてみてくださいね!

データサイエンティスト スクール
【徹底比較】データサイエンティストのための学習ができるスクール9選! スクール名 オススメ度 価格の安さ サポート体制 公式サイト テックアカデミー ...

そこからさらにAI開発側を強めるならUdemy、AI分析側を強めるなら書籍で勉強しつつ

データ分析コンペティションKaggleNishikaなどに挑戦してみることをオススメします!

またAIの資格取得を目指すのもスキル証明の一つとしてありです。

AI資格に関しては以下の記事で解説しているのでよかったらチェックしてみてください。

ai_certification
おすすめAI資格13選を紹介!試験内容や各職種、難易度も徹底解説! こんにちは!スタビジ編集部です! 近年のAI技術の発展から「AIの資格を取得してAIスキルを活かした企業へ就職・転職したい」と...

ぜひ是非幅広く客観的な視点で色んなコンテンツやスクールを見てみてください!

僕のコンテンツを受講してやってもよいよ!という方は、是非!ご受講お待ちしております。

まあ結局はあなたのやる気次第!継続あるのみ!

ぜひAIを勉強して、世の中を変えるAI人材になってください!

スタビジアカデミーでデータサイエンスをさらに深く学ぼう!

スタアカサービスバナースタビジのコンテンツをさらに深堀りしたコンテンツが動画と一緒に学べるスクールです。

プレミアムプランでは私がマンツーマンで伴走させていただきます!ご受講お待ちしております!

スタビジアカデミーはこちら