データ解析

【入門者向け】データ分析の手法と勉強方法!Pythonで実装してみよう!

ウマたん
ウマたん
当サイト【スタビジ】の本記事では、データ分析における考え方や手法の種類についてまとめていきます。データ分析に使う手法は非常に多いので一つ一つ習得していきましょう!最後には特定手法をPythonで実装し、最終的にデータ分析の勉強方法についても解説していきますよ!

こんにちは!

データサイエンティストのウマたん(@statistics1012)です!

消費財メーカーでデータ分析やデータマネジメント、CRMに幅広く携わっています。

元々大学院で数理統計学を専攻しており、現在も領域は広いですが根底にあるのはデータを使ってどのようにビジネスに価値を生み出すかということを生業として仕事をしています。

この記事では、

・データ分析をする上の考え方
・データ分析における手法

・データ分析におけるPython実装
・データ分析の勉強方法

について解説していきたいと思います。

ウマたん
ウマたん
データ分析についてボリュームたっぷりにお届けするよ!

入門者に知って欲しいデータ分析の考え方

python

データ分析の手法を見る前に、まずデータ分析の考え方について3つまとめておきます。

もちろんここに取り上げていることだけではありませんが、ぜひおさえておいて欲しいことを解説していきますよ!

データ分析は分けて比べること

Business Plan

まず確認しておきたいのがデータ分析とは何か。

釈迦に説法かもしれませんが、あえてツッコミたいと思います。

ロボたん
ロボたん
データ分析って、データを分析することじゃないの・・・?
ウマたん
ウマたん
もちろんそれは正しいんだけど、分析についてもう少しだけ突っ込んでみよう!

確かに、データ分析とはその名の通り「データを分析すること

それでは分析とは何か。

意外と分析とは何かと言われると難しいんですよね。

分析とは「分けて比べること」。そしてその結果何かしらの示唆を導き出すこと。

すなわちExcelでクロス集計を行ったとしてもそれはデータ分析なのです。

データ分析というと、崇高な手法を使ってゴリゴリ機械学習使うなどといったイメージをお持ちの方も多いかもしれませんが、基本的にはデータを分けて比べてそれで示唆出しが出来れば、データ分析と言えるのです。

ロボたん
ロボたん
なるほどなるほど・・・比較することが大事なんだね!
ウマたん
ウマたん
いくら大量のデータを扱っていても比較しなければデータ分析とは言えないよ

大量のログデータをSQLで集計・加工しても、それだけではデータ分析とは言えません。

データ集計とデータ分析は明確に切り分けないといけません。

手法にこだわりすぎではいけない

Working late

個人的には新しい手法やアルゴリズムには興味があり手法にこだわってしまう部分があるのですが、正直手法はそれほど大事でない場合が多いです。

手法なんかよりも、まずはどのようなデータを収集し加工し特徴量を作るかが一番大事です。

特徴量を作り出す大事なプロセスである特徴量エンジニアリングについては以下の記事でまとめていますのでぜひチェックしてみてください!

特徴量エンジニアリング
機械学習で重要な特徴量エンジニアリングとは?当サイト【スタビジ】の本記事では、精度の高いモデルを構築する上で非常に重要な特徴量エンジニアリングについて簡単に解説していきます。特徴量エンジニアリングの流れやテクニックを知っているのと知っていないのとではたたき出すアウトプットの質が全く違うので必ず理解しておきましょう!...

まあ、でもある程度手法の知識がないと解釈の仕方を間違ってしまうので全く手法にこだわらなくて良いというわけではありませんよ!

あくまでこだわりすぎないということが大事です。

仮説を立て目的を明確にすることが大事である

Goal

大学時代に企業でインターンシップを行っていた時、大量のデータを渡されてここから何か面白いコト見えてこないかなーというお題をいただいたことがあります。

正直、当時は自分が未熟だったこともあるのですが、業界の知識もなかった僕は仮説を立てることもなく普段使い慣れている手法をとりあえず試して・・・しかし結局は当たり前の結果しか得られなくって・・・みたいな経験をしたことがあります。

やはりデータ分析の時間・労力をムダにしないためにも、分析前に仮説を立てて分析の目的を明確化させるべきです。

仮説はデータ集計の段階での違和感から得られることが多いです。

例えばなんですけど、

データ集計結果から自社サイトへの自然検索からの流入が減っているという現象があるとします。

そうするとSEOが弱まって検索順位が落ちているのではないかという仮説が成り立ちますよね?

しかしSEO順位は変わっていない。そうすると次はSEMを強めたせいで自然検索流入が広告流入に流れてしまっているのでは?という仮説が立ちます。

期間を分けて比べてみる(分析)と実際にSEOの量とSEMの量には負の相関関係があり、ちょうど自然検索流入が落ちた時期にSEMを強めていることが分かりました。

ここまではただのExcelレベルですよね。

ここから最適なコストで最適な効果を得ることのできるSEMの出稿量というのを自動で算出するモデルを作りたいとなるでしょう。

そこでやっと機械学習の出番が出てくるわけですね。

ロボたん
ロボたん
なるほどなるほど・・・Excelで出来るレベルの集計と分析から高度なモデル構築に落ちていくんだねー!
ウマたん
ウマたん
だからExcelレベルのクロス集計などもバカにしちゃいけないんだ!どこにビジネスインパクトを与えるネタが仕込まれているかは分からないんだから!

なんでもかんでも手法を適用させて分析しようとするのではなく、簡単な集計から仮説を立てて目的を明確にしてから高度なデータ分析を行うようにしましょう!

データ分析のプロセスに関しては有名なCRISP-DMというフレームワークがあるので是非一度チェックしておいてください!

CRISP-DM
データ分析プロセスの「CRISP-DM」をデータサイエンティストが解説! こんにちは! 消費財メーカーのデータサイエンティスト、ウマたん(@statistics1012)です。 データ分析に...

データ分析の手法

Stories office

手法にこだわりすぎないことはもちろん大事なのですが、手法について知っておくことはデータ分析において重要です。

データ分析における手法には大きく分けて教師あり学習と教師なし学習があります。

強化学習という手法もありますが、基本的に教師あり学習と教師なし学習さえ知っておけば問題ないです。

教師あり学習

Teacher

教師データとは正解ラベルが付いたデータ。

正解データに対してモデルを構築し、未知データの予測に活かしたりします。

線形回帰分析

回帰分析

教師あり学習の定番は、線形回帰分析。

回帰分析では、ある目的変数と説明変数の関係を見ていくことになります。

元々正解の分かっているデータから回帰モデルを作って、それを新たなデータに当てはめます。

アイスクリームの需要予測などが良い例。アイスクリームの売れた個数(これがいわゆる教師ラベル)をその日の温度や湿度などから予測するモデルを作ります。

正解が分かっている教師データが与えられているので教師あり学習になります。

まずは、線形回帰分析から入門していくのがよいでしょう!

線形回帰分析についてはこちらの記事にまとめていますので良ければご覧ください!

回帰分析
回帰分析の理論とRでの実装!当サイト【スタビジ】の本記事では、統計学・データサイエンスの基本である回帰分析について理論とRでの実装を見ていきます。回帰分析についてしっかりおさえておくことで機械学習など高度な手法についても理解が深まります。...

判別分析

回帰分析が、量的変数を目的変数として扱うのに対して判別分析は質的変数を目的変数として扱います。

統計学における多変量解析手法では一般的に回帰分析・判別分析を分けておりますが、機械学習手法は、回帰も判別も目的に応じて使い分けることが可能です。

決定木

決定木

決定木はタイタニック乗船データに対しても例として用いられている一般的な手法です。

非常に分かりやすくルールも可視化しやすいためビジネスの場面で用いられることが多いです。

そういう意味でいうと、データの解釈のために使われることが多く、単純な予測精度を出したいなら他の手法を用いたほうが無難です。

決定木に関しては以下の記事にまとめています!

決定木
決定木とは?PythonとRで実装してみよう!当サイト【スタビジ】の本記事では、機械学習手法の基本である決定木について見ていきたいと思います。アルゴリズムが分かりやすく実務でもよく使われる手法です。RとPythonでの簡単な実装も合わせておこなっていくので是非チェックしてくださいね!...

k近傍法

K近傍法

k近傍法は、未知データの周りに存在する学習データの数から未知データのラベルを判断する機械学習モデルです。

アルゴリズムはシンプルですが、ある程度精度の見込める手法です。

詳しくは以下の記事にまとめています!

k近傍法とは?理論とRでの実装方法!当サイト【スタビジ】の本記事では、アルゴリズムがシンプルで分かりやすいk近傍法について理解を深めていきます。最終的にはRでの実装を行うことで理論と実装の両輪を理解していきましょう!...

ランダムフォレスト

バギング ランダムフォレスト

ランダムフォレストは、決定木とバギングを組み合わせた手法でそれなりの精度を簡単にたたき出してくれます。

それほど計算負荷もかからないので、ちょっとしたデータを解析するのにはもってこいです。

ランダムフォレストに関してはこちらの記事を参考にしてみてください。

ランダムフォレストとは?PythonとRで実装してみよう!当サイト【スタビジ】の本記事では、決定木をアンサンブル学習することにより汎化能力を高めた強力な機械学習手法「ランダムフォレスト」について見ていきましょう!アルゴリズムを確認した後にRでもPythonでも実装をおこなっていきますよー!...

SVM(サポートベクターマシン)

SVMもランダムフォレスト同様の精度が期待できる優秀な手法です。

応用の幅が広く様々な分野で使われています。計算負荷は高めです。

SVMについて詳しくはこちら!

SVM(サポートベクターマシン)とは?特徴とRによる実装!当サイト【スタビジ】の本記事では、機械学習手法の中でもアルゴリズムが分かりやすい上に汎化能力が高い優秀な手法SVM(サポートベクターマシン)についてまとめていきます!理論とRでの実装を合わせて見ていきますよー!...

ニューラルネットワーク

3層構造のニューラルネットワーク

ニューラルネットワークはディープラーニングの基となった手法です。

ニューラルネットワーク単体ではそれほど高い精度は見込めませんが、中間層を増やせば増やすほど学習が進み(ディープラーニングに近づき)精度が高くなります。その分、計算負荷も上昇します。

ニューラルネットワークに関して詳しくはこちら!

ニューラルネットワークとは?仕組みとRでの実装!当サイト【スタビジ】の本記事では、ディープラーニングの原型となるニューラルネットワークについてまとめていきます!ニューラルネットワークはディープラーニングを学ぶ上での基礎知識としておさえておいてほしい手法。Rでの実装も一緒におこなっていきますよー!...

XGboost

勾配ブースティング

XGboostは、決定木と勾配ブースティングを組み合わせた手法で相当高い精度が見込めます。

今回紹介した教師あり学習の中では最も高い精度が見込める優秀な手法になっております。

XGboostに関しては以下の記事をご覧ください!

XGboostとは?理論とPythonとRでの実践方法!当ブログ【スタビジ】の本記事では、機械学習手法の中でも非常に有用で様々なコンペで良く用いられるXgboostについてまとめていきたいと思います。最後にはRで他の機械学習手法と精度比較を行っているのでぜひ参考にしてみてください。...

時系列データ分析手法(ARIMAなど)

時系列データに対して、通常の回帰系の手法を適用するのは要注意!

見せかけの回帰という問題が時系列データには生じるため、一見寄与率が高いモデルでも全く無意味なモデルであることが多いです。

とはいえ、時系列要素を変数として取り入れて機械学習手法まわすと結構良い精度出すのでどちらを使うかは状況次第といったところでしょうか。

時系列データ分析については以下の記事で簡単にまとめています!

時系列データ分析当サイト【スタビジ】の本記事では、実務の場で登場することの多い時系列データの分析方法についてカンタンにまとめていきます!時系列要素を加味しないとちゃんとしたモデリングができない状況に陥ります。注意しましょう!...

教師なし学習

studies book

教師なし学習は、教師あり学習の前手に次元圧縮を行ったり、データの構造を把握するために使ったりする手法です。

正解ラベルの付いた正解データがないのが特徴です。

クラスター分析

クラスター分析は教師なし学習の中でもっとも有名ですね!

クラスター分析では、正解となるラベルが与えられていません。膨大なデータの中からあるパターンを見つけ出す手法になります。

例えば、顧客の行動データなどをクラスター分析にかけることによって、そのままでは見えてこない顧客セグメントが浮かび上がってくることがあります。

クラスター分析には階層的クラスター分析と非階層的クラスター分析があります。非階層的クラスター分析ではあらかじめクラスター数を決めなくてはいけませんが膨大なデータでも比較的計算が早いです。

クラスター分析に関してはこちらの記事にまとめていますので良ければご覧ください!

クラスター分析
クラスター分析とは?RとPythonでの実装方法を一緒に見ていこう!当サイト【スタビジ】の本記事では、クラスター分析についてまとめていきます。クラスター分析は教師なし学習の定番手法で、データの構造や傾向を把握するのに非常に役立ちます。クラスター分析を利用してデータを可視化してみましょう!...

クラスター分析の中でも特に実務に用いられることの多いk-means法について詳しくは以下の記事でまとめています!

k-means法とは?RとPythonで実装してみよう!当サイト【スタビジ】の本記事では、非階層クラスター分析のk-means法について徹底的に解説していきます。メリットとデメリットがあるので使う際は注意しましょう!x-means法という改良手法も合わせて一緒に見ていきますよー!...

主成分分析

主成分分析

主成分分析は次元削減のために用いられることが多い手法です。

イメージ的にはクラスター分析に近いのですが、クラスター分析がサンプルをカテゴライズしていたのに対して、主成分分析では、数ある変数をカテゴライズします。

例えば、各教科の点数があった時(数学・化学・物理・世界史・日本史・英語などなど)それらに主成分分析をかけることによって、変数をいくつかにまとめあげることができます。

この場合、理系・文系というように分けられることが想像できます。

主成分分析により次元圧縮をしてからクラスター分析をすることなども方法として考えられます。

主成分分析
主成分分析とは?簡単な説明とPythonでの実装!当サイト【スタビジ】の本記事では、実務の基礎分析にて使われることの多い主成分分析について詳しく見ていきます。最後にはカンタンなPythonでの実装も載せていますのでぜひ参考にしてみてください!...

コレスポンデンス分析

コレスポンデンス分析

コレスポンデンス分析は、商品・サービスの特徴を可視化するのに優れた分析手法であり、マーケティングにおける調査に良く使われます。

多変量解析における数量化3類と考え方はほぼ同じです。

様々な商品に対するイメージを分析によってマッピングします。

詳しくは以下の記事でまとめています!

コレスポンデンス分析とは?Rでのやり方を見ていこう!当サイト【スタビジ】の本記事では、マーケティングで用いられることの多い統計的手法「コレスポンデンス分析」について簡単に解説していきたいと思います。Rを使えば簡単に実装できるので合わせて実装方法も見ていきますよー!...

コンジョイント分析

コンジョイント分析

商品やサービスのどの部分を改善すれば消費者に受け入れやすくなるのか(効用値の大小)を把握するための手法であるコンジョイント分析。

どこまでのスペックが欲しいのか・価格はどこまで許容できるのかに対して消費者は明確に意識しているわけではなく、なんとなく潜在的に感覚を持っています。

そんな消費者の潜在的な効用を把握するために、直接的に機能の良し悪しを聞くのではなく様々なスペックの商品に点数を付けてもらうことにより機能の効用値を算出するのがコンジョイント分析になります。

コンジョイント分析に関して詳しくは以下の記事でまとめています!

コンジョイント分析
コンジョイント分析とは?特徴とRでのやり方を見ていこう!当サイト【スタビジ】の本記事では、マーケティングにおける消費者調査の分析に使われるコンジョイント分析をカンタンに解説していきます。Rでの実装も合わせておこなっていくので、ぜひ自分の手を動かして実装してみてくださいね!...

データ分析をPythonで実装してみよう

pc python

データ分析の考え方と手法について見てきました!

ここで、データ分析の定番プログラミング言語であるPythonを使って簡単なデータ分析をおこなっていきましょう!

先ほど登場した手法の中で高い精度が見込めるXGBoostについて実装していきますよー。

Mnistという文字の識別分類データを分類してみましょう!

Mnistのデータセットの特徴は以下です。

・0~9の手書き数字がまとめられたデータセット
・6万枚の訓練データ用(画像とラベル)
・1万枚のテストデータ用(画像とラベル)
・白「0」~黒「255」の256段階
・幅28×高さ28フィールド

それでは、コードをみていきましょう!

まずは、Mnistのデータをインポートして分類するために加工していきます!

続いて、Xgboost用のデータ構造に変換します。

最後にパラメータをセットしてXgboostで学習を行っていきます!

こんなにカンタンに実装できるんですよー!

結果は・・・

Xgboost Mnist

精度・・0.976!!非常に高い!

学習データをインプットして、XGBoostでモデルを構築してテストデータを分類してみると97.6%が正しい数字に分類されたということですねー!

手法にこだわりすぎない方がよい一方で機械学習手法の威力を実感いただけると幸いです。

Pythonの勉強法については以下の記事でまとめています!

データ分析の勉強法

studies book

データ分析について色々と見てきましたが、最後にデータ分析の勉強法について簡単にまとめておきましょう!

繰り返しになりますが、データ分析のインパクトを最大化するためには手法だけ知っていてもダメです。

データ分析前の仮説設定やデータ分析を結果を活かす打ち手の理解なども大事。

そんな視点から総合的にデータ分析の能力を底上げするために必要な勉強方法についてまとめていきます。

ビジネス課題の特定や打ち手の理解をする

まずは、ビジネスやマーケティングの全体感を理解して仮説の精度を上げること。

実践が一番大事ですが、座学でも学べることはたくさんあります。

全体感を理解するには以下のグロービスが提供する定額制の動画学習サービス「グロービス学び放題」がオススメ!

グロービス放題公式サイト:https://hodai.globis.co.jp/lp

グロービス経営大学院を運営するグロービス株式会社がビジネスパーソンに向けて展開しているサービスで、気軽にグロービス流の考え方を学べるので非常にオススメです!

以下のカテゴリがあって様々な内容を学ぶことができます。

思考
戦略・マーケティング
組織・リーダーシップ
会計・財務
グローバル
キャリア・志
変革
テクノベート
創造

カテゴライズされた各コースに対して、初級・中級・実践知というレベル分けと最新のトレンドを講演動画から学ぶTrend pickupというコースがあります。

僕自身非常にお世話になっていて、特に藤原和博さんのグロービス講演動画は目から鱗でした!

1か月あたり、書籍1冊分程度の2000円以下で学べるんです!だいぶお得です。

10日間無料なのでぜひ体験してみてください!

以下の記事でグロービス学び放題について徹底的にレビューしています!

グロービス学び放題
【感動】グロービス学び放題の評判が良いらしいので受講してみた感想レビュー当サイト【スタビジ】の本記事では、グロービス学び放題について徹底的にレビューしていきます!グロービス学び放題の客観的な評判と口コミについてチェックした後に、主観的に感じるメリット・デメリットについて感想をまとめていきますよー!ビジネスパーソンには非常におすすめのサービスなので是非試してみてください!...

一方で細かい打ち手の理解はUdemyのマーケティング講座をいくつか受講してみることをオススメします!

Udemyは世界最大の教育プラットフォームで様々な質の高いコースが買い切り制で書籍1冊くらいの価格で学ぶことができます。

30日間返金無料なので、購入して後悔しても大丈夫です。

Udemy レビュー
【体験談】評判の良いUdemyを実際に20コース受けてみてレビュー!当サイト【スタビジ】の本記事では、世界最大のオンライン学習プラットフォームであるUdemyのメリット・デメリット・評判・口コミについてまとめていきます!実際にPython関連のコースを20個受講して分かった体験談をもとにお伝えしていきます。...

マーケティングの広範な知識や可視化ツールの使い方、フロント言語(HTML・CSS・JS)、SEOやMAの知識などが必要。

Udemyだと以下の講座が良かったです。

以下の記事でWebマーケティングの勉強法について詳しくまとめています。

webマーケティング 勉強
Webマーケティングの勉強方法をデータサイエンティストが解説!当サイト【スタビジ】の本記事では、Webマーケティングの勉強法についてまとめていきます。Webマーケティングは、これからの世の中を生き抜く上で非常に重要なスキル。Webマーケティングをインプットし実践まですることで初めて身に付きます。この記事ではインプット編と実践編に分けて解説していきますよ!...

データ分析の実装と理論の理解

データ分析の手法について簡単に紹介した後、Pythonで実際にデータ分析を行いましたが、データ分析を行う際は理論・手法の理解をしつつ実際に実装できるエンジニアリング力も必要です。

この2つをおさえておく上では以下のUdemy講座がおすすめです。

Udemy コース データサイエンス
\30日間返金無料/

簡単な単回帰分析から機械学習(決定木)を使って回帰と分類問題を解いていくコース!

課題定義や分析において気を付けるべきところについても学べるので実務においても役立つ内容です。

理論に関しては以下のコースでカンタンに広く学べます。

Udemy コース データサイエンス
\30日間返金無料/

データサイエンスの分野を幅広くおさえている講座で、全世界で好評なコース。

ユニークなアニメーションと一緒にビジネスサイドからデータサイエンスを学べるので分かりやすいです。

ただUdemyに関しては独学になってしまいます。

もし独学での勉強が不安な方はデータ分析のコースがあるプログラミングスクールもオススメです。

実際に受講したことのあるプログラミングスクールは以下です。

テックアカデミートップページ

公式サイト:https://techacademy.jp/

テックアカデミーは、オンライン学習ですが現役エンジニアのパーソナルメンターがつくので分からないところも解消しやすくUdemyなどで進めるよりは圧倒的に進みが早いです。

データ分析だと以下の2つのコースがおすすめ。

テックアカデミーについては以下の記事で体験談をまとめていますので是非チェックしてみてください!

【体験談】テックアカデミー評判は?3か月本気受講してみたので徹底レビュー!当ブログ【スタビジ】では、様々なプログラミングスクールの中からテックアカデミーのメリット・デメリット・評判について3か月の体験談をもとに赤裸々にレビューしていきます。...

無料体験は事前に出来るので不安な方は試してみることをオススメします!

 

一方でデータ分析をソリューションにしたAI開発まで踏み込んだ勉強を行いたいなら以下のAidemyもオススメです!

Aidemy トップ

公式サイト:https://premium.aidemy.net

Aidemyとは、AIのソリューションを法人向けに提供していたりAIのプログラミングスクールを提供していたりする会社です。

テックアカデミーはプログラミング全般を網羅していますが、AidemyはAI・Pythonまわりのみに特化したスクールです。

自分に合った完璧オーダーメイドのカリキュラムを作ってくれます。

内容はテックアカデミーよりも濃く深いですが、価格はその分割高です。

無料相談が出来るのと本コース申し込んでも2週間は返金無料です!

実際に受講してみた体験談を以下にまとめています!

Aidemy
【体験談】評判の良い「Aidemy」を受講して分かったメリット・デメリット当サイト【スタビジ】の本記事では、AidemyのPremium planについて実際に自分で受講してみた体験談をもとに分かったこと・メリット・デメリットについてまとめていきます。僕の主観だけでなく口コミや評判に関してもまとめていくのでAidemyを検討している人はぜひ参考にしてみてくださいね!...

データサイエンスやAI系のスクールに関しては以下の記事でまとめていますのでこちらも合わせてチェックしてみてください!

AI機械学習 プログラミングスクール
AI(人工知能)・機械学習が学べるプログラミングスクールおすすめ7選!【データサイエンティストが厳選】当サイト【スタビジ】の本記事では、現役のデータサイエンティストがAI(人工知能)や機械学習を学ぶのにオススメなオンラインプログラミングスクールを紹介していきます。社会人として働きながら通えるスクールもありますので、ぜひ参考にしてあなたにピッタリのコースを見つけてくださいね!...

まとめ

データ分析に関するお話をツラツラとしてきましたが、あくまで手法やプログラミング言語は手段であるということを念頭において、データ分析の目的を明確化することが大事だと思います。

とは言え、目的ばかり考えて頭でっかちになって全く動かないというのもよくないので、とりあえず手を動かしてみるというのも大事なんですよね。

手段の目的化は避けなくてはいけないなと思いつつ、それでもとにかくDoして手段を高速化させていくフローも大事ですよね!

ロボたん
ロボたん
んー、データ分析って難しいなー!
ウマたん
ウマたん
難しいけど楽しいよ!!

というわけで、データ分析に関するボリュームたっぷりのお話でした!

以下の記事で統計学・機械学習・ディープラーニングの勉強法、そしてデータサイエンティストへのロードマップをまとめていますので、重複している部分も多いですがぜひ見てみてください!

統計学入門に必要な知識と独学勉強方法を簡単に学ぼう!当ブログ【スタビジ】の本記事では、統計学入門に必要な知識をカンタンにまとめ、それらをどのように効率的に独学で勉強していけばよいかをお話ししていきます。統計学は難しいイメージが少しありますが、学び方をしっかり考えれば大丈夫!...
機械学習
機械学習入門に必要な知識と勉強方法をPythonとRの実装と一緒に見ていこう!当サイト【スタビジ】の本記事では、入門者向けに機械学習についてカンタンにまとめていきます。最終的にはどのように機械学習を学んでいけばよいかも見ていきます。細かい手法の実装もPython/Rを用いておこなっていくので適宜参考にしてみてください。...
【初心者向け】ディープラーニングの学習ロードマップまとめ当サイト【スタビジ】本記事では、ディープラーニングの学習方法について詳しくまとめていきます!ディープラーニングは難しいと思われがちですが、アルゴリズムは意外とシンプルで実装自体も非常に簡単なんです!Pythonでの実装もおこなっていきますよー!...
【入門者向け】データサイエンティストに必要なスキルと独学勉強ロードマップ!当サイト【スタビジ】の本記事では、データサイエンティストに求められるスキルとそれを身に付けるための勉強法について徹底的にまとめていきます!入門者でも、しっかりデータサイエンティストについて理解しある程度独学で駆け出しの状態までいけることを目指します。...

イラスト出典:Illustration by Stories by Freepik

Pythonを初学者が最短で習得する勉強法

Pythonを使うと様々なことができます。しかしどんなことをやりたいかという明確な目的がないと勉強は捗りません。

Pythonを習得するためのロードマップをまとめましたのでぜひチェックしてみてくださいね!